Motorway Traffic Control via Variable Speed Limits

Prof. Markos Papageorgiou
Dynamic Systems and Simulation Laboratory,
Technical University of Crete, Chania, Greece
Motorways were originally conceived to provide virtually unlimited mobility to road users, but ...
Ile-de-France Expressway Network

12 January 2011, 8:14 am
Capacity Drop (CD)

- Capacity Drop (CD) not well-understood but is deemed to occur due to vehicle acceleration.

- Diagram showing the relationship between flow, density, upstream capacity, and downstream capacity.
2. VARIABLE SPEED LIMITS
- **Automatic VSL** operation started in Germany (around 1970)
- Many application stretches in Germany (> 60 systems covering a total of 1200 km), The Netherlands, U.K., U.S.A., Australia, ...
- VSL are great for traffic safety: **20-30% less accidents**
- **Simplistic** field-applied control strategies
 - hardly any efficiency increase!
Calibration of Fundamental Diagram (U.K. data)

→ monotonically decreasing free speed \(v_f \)

→ monotonically increasing critical density \(\rho_{cr} \)

→ monotonically decreasing capacity
How to decrease travel times with lower VSL?

VSL as flow control actuator

→ MTFC (Mainstream Traffic Flow Control)
 - permanent vehicle storage for sufficiently low VSL (demand > capacity)
 - temporary vehicle storage (demand < capacity)
Why should we hold back (store) vehicles on the mainstream?

- Vehicle acceleration area (~ 400 m) to avoid CD
3. LOCAL FEEDBACK MTFC USING VSL

![Diagram of a traffic system with local feedback control using VSL technology. The diagram includes traffic signals, detectors, and low-speed stretch areas.]
Simple feedback regulator
- **PI-type** or similar

\[q(k) = q(k-1) - K_p[p(k) - p(k-1)] + K_I[p_{cr} - p(k)] \]

- calculates flow \(q(k) \) to bottleneck
- to maintain \(p_{cr} \) at bottleneck
- for maximum throughput

If >1 actuators available
- split flow among actuators
 - balance of delays or queues – equity!
 - queue management

Possibility to consider multiple bottlenecks
→ selection of the currently critical one
U.K. Motorway Network
Macroscopic simulation (METANET)
(validated with real data)
Real demand data
VSL Actuator at Lane Drop (Work Zone)
(*single* bottleneck, *single* actuator)
A3 Motorway (Germany)
(*real* demand, *validated* micro-simulation)

PI-controller:

\[vsl(k) = vsl(k-1) + K_I (\rho_{cr} - \rho(k)) + K_P (\rho(k-1) - \rho(k)) \]
Videos

06:15:00.400

Control

<table>
<thead>
<tr>
<th>Zurückhalte- (Drosselungs-) zone</th>
<th>Beschleunigungs- und Spurwechsel- zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZD-VGB</td>
<td>FWS; Kapazität-VGB</td>
</tr>
<tr>
<td>100</td>
<td>Early Merge 80</td>
</tr>
<tr>
<td>Trichter-VGB1</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Trichter-VGB2</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Trichter-VGB3</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

No Control

Network-wide Integrated Feedback Control:
- Integration with Ramp Metering (HERO)
- Control strategy developed
- Field test agreed in Melbourne, Australia
4. CONCLUSIONS

- VSL may reduce travel times
- Feedback MTFC via VSL is simple and efficient
- De-activation of active bottlenecks
 \[\Rightarrow\] throughput maximisation
- Integration with Ramp Metering
- Further field tests are welcome